比的化简教学设计

时间:2025-09-10 20:29:09
比的化简教学设计

比的化简教学设计

作为一无名无私奉献的教育工作者,有必要进行细致的教学设计准备工作,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那么大家知道规范的教学设计是怎么写的吗?以下是小编为大家收集的比的化简教学设计,仅供参考,大家一起来看看吧。

比的化简教学设计1

一、教学内容分析

《比的化简》是义务教育课程标准实验教科书(北师大版)六年级上册第52——53页的教学内容,主要学习化简比的方法。教材联系学生的生活创设问题情境,让学生在解决问题的过程中加深对比的意义的理解,进一步感受比、除法、分数的关系,体会化简比的必要性,学会化简比的方法。

二、学生分析

在这之前,学生早已学过“商不变的性质”和“分数的基本性质”,最近又认识了比,初步理解了比的意义,以及比与除法、分数的关系,大部分学生能较为熟练地求比值。比较而言,实际上化简比与求比值的方法有相通之处,那么借助知识的迁移能帮助学生顺利理解掌握新知识。

三、教学目标:

1、在实际情境中,让学生体会化简比的必要性,进一步体会比的意义。

2、在观察、比较中理解什么是化简比,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

3、促进知识迁移,培养学生的概括能力。

4、体验知识的相通性以及数学与生活的联系。

四、教学重难点:正确运用商不变的性质或分数的基本性质来化简比。

教学关键:理解“化简比”。

五、教学准备:两杯蜂蜜水,小黑板。

教学过程:

(一)情境引入

老师:不少同学已经发现今天讲台上多了两个杯子,这是老师课前分别调制好的两杯蜂蜜水。你现在能判断出哪杯蜂蜜水更甜吗?

你们需要老师提供什么信息?

根据学生回答出示数据信息:

蜂蜜水

(1)号杯:2小杯18小杯

(2)号杯:30毫升270毫升

你获得了什么信息?

联系最近我们所学的知识,你想到了什么?

随学生回答板书:

(1)号杯2:18

蜂蜜与水的比

(2)号杯30:270

(先是直接结合情境提出问题“哪杯蜂蜜水更甜”,意在调动学生已有的生活经验,使其自己意识到,不知道两杯蜂蜜水中蜂蜜与水的具体含量,是不容易判断的。而后又引导学生联系最近所学,想到用“比”来表示每个杯子中蜂蜜与水的关系。借此体验数学与生活的联系,培养学生的问题意识,发挥学生学习主动性。)

(二)探索新知

1、体会化简比的必要性。

再次提出问题:

哪杯蜂蜜水更甜,你现在能判断出来了吗?你又遇到了什么问题?

想想办法,先和同桌交流。

全班交流:你的想法与依据。随学生回答板书。

2:18=2÷18=2/18=1/9

30:270=30÷270=30/270=1/9

比的比值都是九分之一,也就是说,两个杯子中的蜂蜜与水的.比其实都是是1:9。(式子后板书:1:9)

2:18=2÷18=2/18=1/9=1:9

30:270=30÷270=30/270=1/9=1:9

说一说,这个同学是怎样判断出来哪杯蜂蜜水更甜的?

小结:看!虽然所用的计量单位不同,但两杯中蜂蜜与水的比实际上都是1:9,比较的结果是一样甜。

(在发现、解决实际问题的过程中,加深对比的意义的理解,体会化简比的必要性。)

2、理解化简比,揭示课题。

观察、比较:原来的比与后来得出的比有什么联系与区别?

根据学生发言,师板书:最简单的整数比

你能列举几个“最简整数比”吗?

通过例子认识到,就像分数约分一样再不能约分了,比的前项、后项只有公因数1,这样的整数比就是最简整数比。

指化简过程,揭示课题:比的化简

你是怎么理解化简比的?(随学生回答在化简比的过程上板书“化简”)

刚才化简比时,用到了以前学的什么知识?

小结:分数根据分数的基本性质可以约分,比也可以根据分数的基本性质或商不变的性质化简。

(通过观察、比较,以“最简单的整数比”为突破口,引导学生理解“化简比”。并初步感知化简比的方法,进一步感受比、除法、分数之间的关系,体验到知识的联系性。让学生谈谈自己对化简比的理解,一方面照顾到学生的个性发展,一方面促进学生知识的内化。)

3、化简比的方法。

1)独立尝试:同桌两人分别选一道。(找两人板书)。

出示小黑板:

化简比:24:42120:60

交流:说说你的思路。(方法、根据)

2)小组活动:

出示小黑板:

化简比:

0.7:0.82/5:1/4

这两组比与前面的最大区别是什么?

小组讨论:如何把这两组比化简?并试一试。

3)全班展示、交流:让我们一起来分享同学的智慧。(充分展示学生的不同方法。)

4)归纳:怎样化简比?

(必要时,小组先讨论一下再在全班交流。)

老师小结:看来,化简比的方法不唯一,不过都有一个共同目标:化简成最简单的整数比;化简比的方法可以统一,就像求比值一样,只不过最后写成比的形式罢了,实际上,化简比与求比值仅一步之遥。

4、看书质疑。

(从模仿练习,到变化练习,从独立尝试到小组讨论解决问题,既让学生感受到化简比的三种类型:整数与整数的比;小数与小数的比;分数与分数的比,又让学生在寻求不同题目的解决方法中巩固化简比的方法,还发挥小组骨干引领作用,培养学生的合作能力。最后鼓励学生归纳化简比的方法,力图培养学生的概括能力,并使学生体验到知识的相通性。)

(三)巩固、提高

1、化简比:(带※的为选做)

(要求:学习有些吃力的可只化简前三组比,程度一般的学生至少化简四组比,程度好的学生要求全做。)

21:240.3:1.54/5:5/71:4/5※0.12:6※0.4:1/4

2、课本第53页第2题。(写出各杯中糖与水的质量比。并判断:这几杯糖水中有一样甜的吗?)

(在练习中巩固化简比的方法,在巩固中得到提高。练习兼顾到班上不同程度学生的差异,练习要求因人而异。并逐步又与生活结合起来,进一步让学生体验到数学与生活的联系,增强数学的应用意识。)

(四)总结

回顾这节课,你有什么收获?利用所学的比,你能解决生活中 ……此处隐藏3077个字……学生发言老师板书)

小结:比较的结果一样甜,分数可以约分比也可以化简。

2.新授

①引入“最简单整数比”的概念。

最简单的整数比就是比的前项、后项是互质数,像6∶5就是最简单的整数比。

②你还能举一些最简单的整数比的例子吗?如果我们能把比都化成最简单的整数比,就容易计算了!

③出示问题尝试并讨论:

12:8 0.7:0.8 2/5:1/4

1.能不能把整数比化简成最简单的整数比?如何化?

2.能不能把分数比化简成最简单的整数比?如何化?

3.能不能把小数比化简成最简单的`整数比?如何化?

④交流

1.化简整数比的方法是什么?(先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变的性质)

2.怎样把分数比化成最简单的整数比?(先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)

3.如何把小数比化简成最简单的整数比?(先化成整数比,再化简成最简单的整数比)

⑤介绍比的基本性质

3.练习

1、P51页化简下面各比。(独立完成,集体评讲)

2、练习:做书上练一练的第1、2题。

五、教师反思

比与除法、分数之间有如此密切的联系,利用除法中商不变的性质或分数的基本性质来化简比,这样的教学对学生掌握知识来说比较顺利,但在教学过程中要注重细节的指导,还要相信学生能根据以前的知识找到适合的化简方法,充分给予学生更大的空间。

比的化简教学设计7

教学目标:

1、在实际情境中,体会化简比的必要性,进一步体会比的意义。

2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

教学重难点:

1、运用商不变的性质或分数的基本性质化简比。

2、解决一些简单的实际问题。

学习目标:

1、理解比的意义,感受比与除法、分数之间的关系,体会化简比的必要性。

2、学会化简比的方法。

教学准备:

ppt课件

教学过程:

一、导入

(一)导情趣(抢答式复习)

1、 60÷10 = 600÷( )= ( )÷1 = 0.6÷( )

说一说:解答这两道题你用的是什么知识?

(除法中商不变的性质和分数的基本性质)

除法中商不变的性质是什么?分数的基本性质又是什么?

2、比与除法、分数有什么关系?

(用字母表示:a:b=a÷b=a/b)

(二)导目标

除法中有商不变的性质,分数中有分数的基本性质,那么比有什么性质呢?今天我们就一起来研究——比的化简。(板书:比的化简)

下面请同学们一起来看一看本节课的学习目标。(课件出示目标)

学习目标:

1、理解比的意义,感受比与除法、分数之间的关系。

2、体会化简比的必要性,学会化简比的方法。

二、分组自学目标1

(出示情景图)

淘气调制了一杯蜂蜜水,用了40毫升蜂蜜、360毫升的水。笑笑也调制了一杯蜂蜜水,用了2小杯蜂蜜、18小杯水。同学们想一想哪杯水更甜?

1、导学法

估一估、想一想、算一算

2、小组互相讨论,发表看法。

40 :360 2:18

3、质疑问难

直接比较他们俩谁调制的蜂蜜水更甜还是有困难的,那么你能不能联系比与除法和分数的关系,来想办法解决呢?小组讨论一下,该如何来计算并比较呢?

4、各组自学,交流汇报。

你们运用了什么好方法?都学会了什么?

学生边汇报,老师边板书。

40:360=40/360=1/9=1:9

2:18=2/18=1/9=1:9

5、小结:比较的结果一样甜,由此可见,比的化简对我们解决生活中的实际问题是有很大帮助的,从中我们也体会到了化简比是有必要的。那么到底什么样的比才是最简单的整数比呢?我们来看大屏幕。

6、导入“最简单整数比”的概念。

比的前项与后项只有公因数1,这样的整数比就是最简整数比。也就是说,

最简单的整数比就是比的前项、后项是互质数,像6∶5就是最简单的整数比。

你能列举出几个最简整数比吗?(指名回答)

7、同学们,你们想知道这些最简单的整数比是用什么方法化简得到的吗?下面我们就来学习第二个目标。(出示目标)

三、分组自学目标2

1、出示问题:化简比

24:42 0.7:0.8 2/5:1/4

2、导学法

学法指导:

每组任选一题、分析比的类型、个人独立解答、交流解题依据、组内总结方法

3、各小组自学,交流讨论。

4、汇报交流

你们组是用什么方法学习的?是怎样学的?都学会了什么?

(指名板书计算过程)

5、指导总结化简比的'方法

(1)化简整数比的方法是什么?(先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变的性质)

(2)怎样把分数比化成最简单的整数比?(先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)

(3)如何把小数比化简成最简单的整数比?(先化成整数比,再化简成最简单的整数比)

6、智力大比拼:总结比的基本性质

你能根据商不变的性质和分数的基本性质概括出比的基本性质吗?

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

利用比的基本性质也可以化简比:

14:21 = (14÷7) :(21÷7) =2:3

7、老师小结:看来,化简比的方法不,不过都有一个共同目标:化简成最简单的整数比;那么化简比与求比值有什么区别呢?(课件)

四、练习(课件)

1、化简比:

15:21 0.12:0.4 2/3:1/2 1:2/3

2、连一连

3、判断

4、写出各杯中糖与水的质量比。

5、解决问题

五、回顾学习目标,进行本课总结

回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?

小结:生活中有很多问题需要通过化简比来解决,因此我们必须学会根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简比。

板书:

比的化简

a:b=a÷b=a/b

40:36=40/360=1/9=1:9

2:18=2/18=1/9=1:9

《比的化简教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式