
高一上册数学教学计划
时光在流逝,从不停歇,我们的工作又将在忙碌中充实着,在喜悦中收获着,此时此刻我们需要开始制定一个计划。那么我们该怎么去写计划呢?下面是小编精心整理的高一上册数学教学计划,欢迎大家分享。
高一上册数学教学计划1一、设计理念
新课标指出:学生的数学学习活动不应只是接受、记忆、模仿、练习,教师应引导学生自主探究、合作学习、动手操作、阅读自学,应注重提升学生的数学思维能力,注重发展学生的数学应用意识。
二、教材分析
本节课选自人教版《普通高中课程标准实验教课书》必修1,第一章1.1.2集合间的基本关系。集合是数学的基本和重要语言之一,在数学以及其他的领域都有着广泛的应用,用集合及对应的语言来描述函数,是高中阶段的一个难点也是重点,因此集合语言作为一种研究工具,它的学习非常重要。本节内容主要是集合间基本关系的学习,重在让学生类比实数间的关系,来进行探究,同时培养学生用数学符号语言,图形语言进行交流的能力,让学生在直观的基础上,理解抽象的概念,同时它也是后续学习集合运算的知识储备,因此有着至关重要的作用。
三、学情分析
【年龄特点】:
假设本次的授课对象是普通高中高一学生,高一的学生求知欲强,精力旺盛,思维活跃,已经具备了一定的观察、分析、归纳能力,能够很好的配合教师开展教学活动。
【认知优点】
一方面学生已经学习了集合的概念,初步掌握了集合的三种表示法,对于本节课的学习有利一定的认知基础。
【学习难点】
但是,本节课这种类比实数关系研究集合间的关系,这种类比学习对于学生来说还有一定的难度。
四、教学目标
? 知识与技能:
1. 理解子集、V图、真子集、空集的概念。
2. 掌握用数学符号语言以及V图语言表示集合间的基本关系。
3. 能够区分集合间的包含关系与元素与集合的属于关系。
? 过程与方法:
1. 通过类比实数间的关系,研究集合间的关系,培养学生类比、观察、
分析、归纳的能力。
2. 培养学生用数学符号语言、图形语言进行交流的能力。
? 情感态度与价值观:
1.激发学生学习的兴趣,图形、符号所带来的魅力。
2.感悟数学知识间的联系,养成良好的思维习惯及数学品质。
五、教学重、难点
重点:
集合间基本关系。
难点:
类比实数间的关系研究集合间的关系。
六、教学手段
PPT辅助教学
七、教法、学法
? 教法:
探究式教学、讲练式教学
遵循“教师主导作用与学生主体地位相结合的”教学规律,引导学生自主探究,合作学习,在教学中引导学生类比实数间关系,来研究集合间的关系,降低了学生学习的难度,同时也激发了学生学习的兴趣,充分体现了以学生为本的教学思想。
? 学法:
自主探究、类比学习、合作交流
教师的“教”其本质是为了“不教”,教师除了让学生获得知识,提高解题能力,还应该让学生学会学习,乐于学习,充分体现“以学定教”的教学理念。通过引导学生类比学习,同学间的合作交流,让学生更好的学习集合的知识。
八、课型、课时
课型:新授课
课时:一课时
九、教学过程
(一)教学流程图
(二)教学详细过程
1..回顾就知,引出新知
问题一:实数间有相等、不等的关系,例如5=5,3﹤7,那么集合之间会有什么关系呢?
2.合作交流,探究新知
问题二:大家来仔细观察下面几个例子,你能发现集合间的关系吗?
(1)A={1,2,3},B={1,2,3,4,5};
(2)设A为新华中学高一(2)班女生的全体组成集合;B为这个班学生的全体组成集合;
(3)设C={x∣x是两条边相等的三角形},D={x∣x是等腰三角形}
【师生活动】:学生观察例子后,得出结论,在(1)中集合A中的任何一个元素都是集合B中的元素,教师总结,这时我们说集合A与集合B 有包含关系。(2)中的集合也是这种关一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两集合有包含关系,称集合A为集合B 的.子集,记作:A?B(B?A),读作A含于B或者B包含A.
在数学中我们经常用平面上封闭的曲线内部代表集合,这样上述集合A与集合B的包含关系,可以用下图来表示:
问题三:你能举出几个集合,并说出它们之间的包含关系吗?
【师生活动】:学生自己举出些例子,并加以说明,教师对学生的回答进行补充。
问题四:对于题目中的第3小题中的集合,你有什么发现吗?
【师生活动1】:在(3)由于两边相等的三角形是等腰三角形,因此集合C,D都是所有等腰三角形的集合,集合C中任意一个元素都是集合D的元素 ,同时集合D任意一个元素都是集合C的元素,因此集合C与集合D相等,记作:C=D。
用集合的概念对相等做进一步的描述:
如果集合A是集合B 子集,且集合B是集合A的子集,此时集合A与集合B的元素一样,因此集合A与集合B 相等,记作A=B。
强调:如果集合A?B,但存在元素x∈B, 且x?A,我们称集合A是集合B的真子集,记作:A?B
【师生活动2】:教师引导学生以(1)为例,指出A?B,但4∈B, 4?A,教师总结所以集合A是集合B的真子集。
【师生活动】?,并规定空集是任何集合的
4.思维拓展,讨论新知
问题六:包含关系{a}?A与属于关系a∈A有什么区别?请大家用具体例子来说明
【师生活动1】:学生以(1)为例{1,2}?A,2∈A,说明前者是集合之间的关系,后者是
问题七:经过以上集合之间关系的学习,你有什么结论?
【师生活动】:师生讨论得出结论:
(1)任何一个集合都是它本身的子集,即A?A
5.练习反馈,培养能力
例1写出集合{a,b}的所有子集,并指出哪些是真子集
例2用适当的符号填空
(1)a_{a,b,c}
(2){0,1}_N
(3){2,1}_{X∣X2-3X+2=0}
6.课堂小结,布置作业
这节课你学到了哪些知识?
小结 知识上:
能力上:
情感上:
作 ……此处隐藏7407个字……起了学生的积极性,吸引学生的注意力,设置轻松的学习气氛。
7.2步步探索,形成概念
【活动1】观察下列对象:
①1~20以内的所有质数;
②我国从1991—20xx年的13年内所发射的所有人造卫星
③金星汽车厂20xx年生产的所有汽车;
④20xx年1月1日之前与我国建立外交关系的所有国家;
⑤所有的正方形;
⑥到直线l的距离等于定长d的所有的点;
⑦方程x2+3x—2=0的所有实数根;
⑧新华中学20xx年9月入学的所有的高一学生。
师生共同概括8个例子的特征,得出结论,给出集合的含义:把研究对象统称为元素,常用小写字母啊a,b,c….表示,把一些元素组成的总体叫做集合,常用大写字母A,B,C….来表示。
【设计意图】使学生自己明确集合的含义,培养学生的概括能力。
【活动2】要求每个学生举出一些集合的例子,选出具有代表性的几个问题,比
如:
1)A={1,3},3、5哪个是A的元素?
2)B={身材较高的人},能否表示成集合?
3)C={1,1,3}表示是否准确?
4)D={中国的直辖市},E={北京,上海,天津,重庆}是否表示同一集合?
5)F={a,b,c}与G={c,b,a}这两个集合是否一样?
【分析】1)1,3是A的元素,5不是
2)我们不能准确的规定多少高算是身材较高,即不能确定集合的元素,
所以B不能表示集合
3)C中有二个1,因此表达不准确
4)我们知道E中各元素都是属于中国的直辖市,但中国的直辖市并不 只有这几个,因此不相等。
5)F和G的元素相同,只不过顺序不同,但还是表示同一个集合
通过上述分析引导学生自由讨论、探究概括出集合中各种元素的特点,并让学生再举出一些能够构成集合的例子以及不能构成集合的例子,要求说明理由。师生一起得出集合的特征:
1)确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.
2)互异性:同一集合中不应重复出现同一元素.
3)无序性:集合中的元素没有顺序
4)集合相等:构成两个集合的元素完全一样
【设计意图】引导学生自主探究得出集合的特征:确定性、互异性、无序性,集合相等,培养学生的抽象概括能力,同时使学生能更好的了解集合。
7.3集合与元素的关系
【问题】高一(4)班里所有学生组成集合A,a是高一(4)班里的同学,b是
高一(5)班的同学,a、b与A分别有什么关系?
引导学生阅读教科书中的相关内容,思考上述问题,发表学生自己的看法。 得出结论:①如果a是集合A的元素,就说a属于集合A,记作a∈A。
②如果b不是集合A的元素,就说b不属于集合A,记作b?A。
再让学生举一些例子说明这种关系。
【设计意图】使学生发挥想象,明确元素与集合的关系。
【活动】熟记数学中一些常用的数集及其记法
引导学生回忆数集扩充过程,阅读教科书第3页表格中的内容,认识常用数集记号。
【设计意图】使学生熟记常用数集的记号,以免日后做题时混淆。
7.4集合的表示方法
【问题】由以上内容我们可以知道用自然语言可以描述一个集合,那么有没有其他方式表示集合呢?
7.4.1集合的列举法表示
【活动】尝试用列举法第4页例1中的集合:
1)小于10的所有自然数组成的集合;
2)方程x2?x的所有实数根组成的集合;
3)由1到20以内的所有素数组成的集合;
并思考列举法的特点。
引导学生阅读教科书,自主学习列举法,得出答案:
1)A={0,1,2,3,4,5,6,7,8,9}
2)A={0,1}
3)A={2,3,5,7,11,13,17,19}
通过上述讲解请同学说说列举法的特点:
1)用花括号{}把元素括起来
2)集合的元素可以具体一一列出
【设计意图】使学生学习基本了解用列举法表示集合的方法,并了解列举法的特点。
7.4.2集合的描述法表示
【活动1】提出教科书中的思考题:
1)你能用自然语言描述集合{2,4,6,8}吗?
2)你能用列举法表示不等式x—7<3的解集吗?
学生讨论,师生总结:
1)从2开始到8的所有偶数组成的集合
2)这个集合中的元素不能一一列出,因此不可以用列举法表示
引导学生思考、讨论用列举法表示相应集合的困难,激发学生学习描述法的积极性。
引导学生阅读教科书中描述法的相关内容,让学生讨论交流,归纳描述法的特点。
例如2)可以用描述法表示为:A={x?R|x<10}
【设计意图】使学生体会用描述法表示集合的必要性,会用描述法表示集合。
【活动2】引导学生完成第5页例2
1) 方程x2?2?0的所有实数根组成的集合
2) 由大于10小于20的所有整数组成的集合
讨论应当如何根据问题选择适当的集合表示法。学生回答,老师进行总结:
1)描述法:A={ x?R|x2?2?0}
列举法:
2)描述法:A={ x?Z|10
列举法:A={11,12,13,14,15,16,17,18,19}
【设计意图】使学生掌握好两种表示法各自的特点,根据题目灵活选择。
7.5课堂小结,学习反思
【问题】1)集合与元素的含义?
2)集合的特点?
3)集合的不同表示方法
引导学生整理概括这一节课所学的知识
【设计意图】归纳整理知识,形成知识网络,并培养学生自主对所学知识进行总结的能力。
8、作业布置,巩固新知
课后作业:习题1.1A组第4题
课后思考作业: ①结合实例,试比较用自然语言、列举法和描述法表示集合时各自的特点和适用的对象。
②自己举出几个集合的例子,并分别用自然语言、列举法和描述法表示出来。
9、板书设计
1.1.1集合的含义与表示
1、元素的含义:把研究对象统称为元素
2、集合的含义:一些元素组成的总体。
3、集合元素的三个特性:确定性,互异性,无序性,集合相等
4、元素与集合的关系:a?A,a?A
5、常用数集与记法
6、列举法
7、描述法
8、课堂小结



