初中数学教学设计

时间:2025-10-18 11:41:09
初中数学教学设计【合集15篇】

初中数学教学设计【合集15篇】

作为一位兢兢业业的人民教师,总不可避免地需要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。我们应该怎么写教学设计呢?下面是小编收集整理的初中数学教学设计,欢迎阅读,希望大家能够喜欢。

初中数学教学设计1

课程名称:XXX科目(例:数学或英语)

教学内容:XXX(例:多项式的运算、阅读理解)

授课时间:XXX(例:8月25日)

授课目标:

1. 知识目标:掌握XXX知识点(例:掌握多项式的加减法)

2. 能力目标:能够熟练运用XXX能力(例:能够运用多项式的运算方法解决数学题目)

3. 情感目标:培养学生对XXX科目的兴趣,增强学生的自信心。

教学重点:

XXX(例:多项式的乘法运算)

教学难点:

XXX(例:多项式的因式分解)

教学方法:

1. 讲授法:通过讲解知识点,引导学生理解;

2. 演示法:通过实例演示,帮助学生掌握运算方法;

3. 互动法:通过师生互动和小组讨论,促进学生思维发展。

教学过程:

一、导入环节

1. 通过课前小测验引导学生回忆上一堂课的内容,激发学生的学习兴趣。

2. 引入新知识点,介绍本节课要学习的XXX知识点,并与学生共同探讨学习目标。

二、讲授环节

1. 讲解XXX知识点的定义、特点和运算方法,帮助学生理解和记忆。

2. 通过实例演示多项式的加减法和乘法运算,让学生掌握运算方法。

三、练习环节

1. 在教师的指导下,学生进行多项式的运算练习。

2. 通过小组讨论和互动交流,促进学生思维发展,并解决学生的.疑惑。

四、反思环节

1. 教师和学生共同回顾本节课所学内容,总结知识点和运算方法。

2. 鼓励学生畅所欲言,积极参与,提出自己的看法和想法,并给予鼓励和肯定。

五、作业布置

1. 在课堂结束前,布置作业并解释作业要求。

2. 鼓励学生自主思考和探索,完成作业并提交。

教学资源:

1. PPT课件;

2. 多项式的实例;

3. 练习题和作业。

教学评估:

1. 课堂表现评估:通过观察学生在课堂上的表现,如主动性、合作精神等,评估学生的课堂表现;

2. 作业评估:通过批改作业,评估学生对知识点的掌握程度和综合运用能力;

3. 小测验评估:通过小测验评估学生对上一堂课所学知识点的掌握程度。

教学后思考:

1. 思考本次教学中成功的经验和不足之处;

2. 思考如何进一步优化教学方案和教学方法,提高学生的学习效果和兴趣。

3. 做好教学记录,为今后的教学工作提供参考。

初中数学教学设计2

(一)创设情境导入新课

不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?

如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?

设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

(二)合作交流探究新知

(活动一)探究角平分仪的原理。具体过程如下:

播放美访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。

设计目的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。

(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.

分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:

已知:∠AO B.

求作:∠AOB的平分线.

作法:

(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.

(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.

(3)作射线OC,射线OC即为所求.

设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

议一议:

1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?

2.第二步中所作的两弧交点一定在∠AOB的内部吗?

设计这两个问题的目的在于加深对角的'平分线的作法的理解,培养数学严密性的良好学习习惯。

学生讨论结果总结:

1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.

2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.

3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.

4.这种作法的可行性可以通过全等三角形来证明.

(活动三)探究角平分线的性质

思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对?

这样设计的目的是加深对全等的认识。

初中数学教学设计3

一、 内容简介

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2 ……此处隐藏17545个字……的:

1、我们大家在日常生活中见过哪些菱形图案?(看谁说的多)学生争先恐后地说:

(1)吃过的菱形形状的食物

(2)春节时门上贴的剪纸花

(3)居室装饰地板砖

(4)中国结

(5)菱形衣帽架等。

2、为什么把这些图案设计成菱形呢?

3、菱形到底有哪些特殊的性质和运用呢?(板书课题) 通过本节课的学习之后大家可以总结出来。

然后通过画图和电脑显示,让学生去猜想,去探究,去发现,去论证。从而弄清了菱形的定义、性质、面积公式及简单运用,

然后让学生思考日常生活中还有哪些菱形性质方面的应用。

这样通过创设问题情境,让学生产生一种好奇,一种对知识的渴望,为探究活动创造了良好的条件,为本节课的成功创造了条件。同时让学生感受到了数学问题来源于生活。让学生多留意身边的事物转化成数学问题。但教学中要注意从实际出发,创设学生所熟悉的喜闻乐见的东西。同时不是为情趣而情趣,要注意增加情趣的内涵。注意经常引导学生用数学的眼光看待周围的事物,培养学生数学问题意识。

二、变更表述形式,创设问题情境

在数学教学中教师可以运用直观形象的具体材料,创设问题情境,设障布疑,激发学生思维的积极性和求知需要的一种教学方法——有时可通过变更问题的表述形式,引发学生兴趣。 例如:“等腰三角形的判定定理”的教学,为引出等腰三角形的判定定理,通常提出问题:“如图(1),△ABC要判定它是等腰三角形

BC A 有哪些方法呢?”这样出示问题显得单调又乏味。为了同样的教图(1)学目的(引导学生获得判定定理),教师若能根据“性质定理”与“判定定理”的内在联系,在引导学生性质定理后,提出这样一个实际问题“如图(2),△ABC是等腰三角形,AB=AC,因不小心,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,试问能否把原来的△ABC重新画出来?”不仅引发了生动活泼的讨论形式,而且也收到良好的引发效果,(有的先度量∠C度数,再以BC为边作∠B=∠C;有的取BC中点D,过D作BC的垂线等)。由此可见,在定理或概念性较强的性质的教学中,应尽力创设问题情境,使学生认识到所学内容的意义,使他们产生学习需要,形成学习的'内驱力,诱发学生积极思维,在教师的指导下,让学生主动去探索解决问题的办法,在实践中培养学生的创造能力。

三、猜想验证法,创设问题情境

在数学教学中,利用猜想验证的课堂教学模式创设问题情境,可以积极的促进学生有效的参与课堂教学,学生兴趣高涨,主动的进行猜想验证。

例如,在教学“三角形的内角和”时,我先请同学们试先量一量自己准备好的三角形的每一个内角的度数,然后告诉我其中两个内角的度数,我迅速的说出第三个内角的度数。同学们都感到很惊讶!为什么老师能很快的说出第三个内角的度数呢?通过观察他们发现:每个三角形的内角和都是180度。我问他们是不是任何一个三角形的内角和都是180度呢?他们的回答是肯定的。我说这只不过是你们的一个猜想,下面就请同学们利用你手中的学具来验证你的猜想。于是,同学们立刻想到了手中的三角板,积极的行动起来证明自己的猜想。

总之,创设问题情境,培养学生问题意识,一方面能激发学生学习动机、培养创新思维,是新课程理念下数学教学的重要环节。另一方面有助于学生积极地建构数学知识,在情境中自主的参与探究和相互交流,从而达到意义建构的目的,提高课堂教学的有效性。当然教学没有最好,只有更好,让我们在今后的教学过程中不断探索,不断创新,争取更打的进步。

初中数学教学设计15

一、教材分析

反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

二、学情分析

由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

三、教学目标

知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.

解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.

四、教学重难点

重点:理解反比例函数意义,确定反比例函数的表达式.

难点:反比例函数表达式的确立.

五、教学过程

(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单

位:m)随宽x(单位:m)的变化而变化。

请同学们写出上述函数的表达式

14631000(2)y= tx

k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=

是自变量,y是函数。

此过程的目的`在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。

当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

举例:下列属于反比例函数的是

(1)y= (2)xy=10 (3)y=k-1x (4)y= -

此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)

已知y与x成反比例,则可设y与x的函数关系式为y=

k x?1

k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=

已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

例:已知y与x2反比例,并且当x=3时y=4

(1)求出y和x之间的函数解析式

(2)求当x=1.5时y的值

解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

六、评价与反思

本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。

《初中数学教学设计【合集15篇】.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式