高一上学期数学教学计划

时间:2025-07-11 11:41:08
高一上学期数学教学计划

高一上学期数学教学计划

日子如同白驹过隙,前方等待着我们的是新的机遇和挑战,此时此刻我们需要开始做一个计划。计划到底怎么拟定才合适呢?以下是小编整理的高一上学期数学教学计划,供大家参考借鉴,希望可以帮助到有需要的朋友。

高一上学期数学教学计划1

数学是一切科学的基础,可以说人类的每一次重大进步背后都是数学在后面强有力的支撑。以下是小编为大家整理的高一上学期数学教学计划,希望可以解决您所遇到的相关问题。

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和做出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书〃数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的'语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

高一学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辩证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

最后,希望小编整理的高一上学期数学教学计划对您有所帮助,祝同学们学习进步。

高一上学期数学教学计划2

新学期已开始,为使新学期的工作有条不紊的进行,使教学工作更加科学合理,使学生对知识的接收更加得心应手,特订新学期个人教学计划如下

一,指导思想

加强现代教育理论的学习,提高自身的素质,转变教育观念,以教育科研为先导,以培养学生的创新精神和实践能力为重点,深化课堂教学改革,大力推进素质教育。

二,教材分析

本册教材具有以下几个明显的特点:

1。为学生的数学学习构筑起点

教科书提供了大量数学活动的线索,作为所有学生从事数学学习的出发点。目的是使学生能够在所提供的学习情景中,通过探索与交流等活动,获得必要的发展。

2,向学生提供现实,有趣,富有挑战性的学习素材

教科书从学生实际出发,用他们熟悉或感兴趣的问题情景引入学习主题,并提供了众多有趣而富有数学含义的问题,以展开数学探究。

3,为学生提供探索,交流的时间与空间

教科书依据学生已有的知识背景和活动经验,提供了大量的操作,思考与交流的机会,帮助学生通过思考与交流,梳理所学的知识,建立符合个体认知特点的知识结构。

4,展现数学知识的形成与应用过程

教科书采用"问题情境—建立模型—解释,应用与拓展"的模式展开,有利于学生更好地理解数学,应用数学,增强学好数学的信心。

5,满足不同学生的发展需求

教科书中"读一读"给学生以更多了解数学,研究数学的机会。教科书中的习题分为两类:一类面向全体学生;另一类面向有更多数学需求的学生。

三,教材的重点和难点

本册教材从内容上看,教学重点是三角形和四边形的性质定理

和判定定理的应用以及一元二次方程的应用。教学难点是对反

比例函数的理解及应用;用试验或模拟试验的方法估计一些复

杂的随机时间发生的概率。

四,教学措施:

1,根据学生实际,创造性地使用教材,积极开发和利用各种教学资源,为学生提供丰富多彩的学习素材。

2,加强直观教学,充分利用教具,学具等多媒体教学,以丰富学生感知认识对 ……此处隐藏9251个字……–1

师:求并集时,两集合的相同元素如何在并集中表示.

生:遵循集合元素的互异性.

师:涉及不等式型集合问题.

注意利用数轴,运用数形结合思想求解.

生:在数轴上画出两集合,然后合并所有区间. 同时注意集合元素的互异性. 学生尝试求解,老师适时适当指导,评析.

固化概念

提升能力

探究性质 ①A∪A = A, ②A∪ = A,

③A∪B = B∪A,

④ ∪B, ∪B.

老师要求学生对性质进行合理解释. 培养学生数学思维能力.

形成概念 自学提要:

①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?

②交集运算具有的运算性质呢?

交集的定义.

由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.

即A∩B = {x | x∈A且x∈B}

Venn图表示

老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义. 并总结交集的性质.

生:①A∩A = A;

②A∩ = ;

③A∩B = B∩A;

④A∩ ,A∩ .

师:适当阐述上述性质.

自学辅导,合作交流,探究交集运算. 培养学生的自学能力,为终身发展培养基本素质.

应用举例 例1 (1)A = {2,4,6,8,10},

B = {3,5,8,12},C = {8}.

(2)新华中学开运动会,设

A = {x | x是新华中学高一年级参加百米赛跑的同学},

B = {x | x是新华中学高一年级参加跳高比赛的同学},求A∩B.

例2 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系. 学生上台板演,老师点评、总结.

例1 解:(1)∵A∩B = {8},

∴A∩B = C.

(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合. 所以,A∩B = {x | x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.

例2 解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.

(1)直线l1,l2相交于一点P可表示为 L1∩L2 = {点P};

(2)直线l1,l2平行可表示为

L1∩L2 = ;

(3)直线l1,l2重合可表示为

L1∩L2 = L1 = L2. 提升学生的动手实践能力.

归纳总结 并集:A∪B = {x | x∈A或x∈B}

交集:A∩B = {x | x∈A且x∈B}

性质:①A∩A = A,A∪A = A,

②A∩ = ,A∪ = A,

③A∩B = B∩A,A∪B = B∪A. 学生合作交流:回顾→反思→总理→小结

老师点评、阐述 归纳知识、构建知识网络

课后作业 1.1第三课时 习案 学生独立完成 巩固知识,提升能力,反思升华

备选例题

例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

【解析】法一:∵A∩B = {–2},∴–2∈B,

∴a – 1 = –2或a + 1 = –2,

解得a = –1或a = –3,

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去

∴a = –1.

法二:∵A∩B = {–2},∴–2∈A,

又∵a2 + 1≥1,∴a2 – 3 = –2,

解得a =±1,

当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

例2 集合A = {x | –1

(1)若A∩B = ,求a的取值范围;

(2)若A∪B = {x | x<1},求a的取值范围.

【解析】(1)如下图所示:A = {x | –1

∴数轴上点x = a在x = – 1左侧.

∴a≤–1.

(2)如右图所示:A = {x | –1

∴数轴上点x = a在x = –1和x = 1之间.

∴–1

例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B 与A∩C = 同时成立?

【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

由A∩B 和A∩C = 同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C = 相矛盾,故不适合.

当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B 与A∩C = ,同时成立,∴满足条件的实数a = –2.

例4 设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

当x = 3时,A = {9,5,– 4},B = {–2,–2,9},B中元素违背了互异性,舍去.

当x = –3时,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}满足题意,故A∪B = {–7,– 4,–8,4,9}.

当x = 5时,A = {25,9,– 4},B = {0,– 4,9},此时A∩B = {– 4,9}与A∩B = {9}矛盾,故舍去.

综上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

《高一上学期数学教学计划.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式